行列式

行列式的性质(用来化简行列式)

  1. 行列式互换,行列式的值不变;
  2. 两行(列)互换,行列式变号;
  3. 提公因子,一行(列)出一个k;
  4. 行列式相加(按行、列拆分都同理):a11a12a1nai1+bi1ai2+bi2ain+binan1an2ann=a11a12a1nai1ai2ainan1an2ann+a11a12a1nbi1bi2binan1an2ann\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1}+b_{i1} & a_{i2}+b_{i2} & \cdots & a_{in}+b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}
  5. 一行(列)×k(k能为0,因为k=0无效)加到另一行(列),行列式的值不变。

    推论:两行(列)成比例,行列式为零。

上、下三角、主对角行列式

a11a12a1n0a22a2n00ann=a1100a21a220an1an2ann=a11000a22000ann=i=1naii\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} =\prod_{i=1}^{n} a_{ii}

副对角线的上、下三角、副对角行列式

a11a1,n1a1na21a2,n10an100=00a1n0a2,n1a2nan1an,n1ann=00a1n0a2,n10an100=(1)n(n1)2i=1nai,ni+1\begin{vmatrix} a_{11} & \dots & a_{1,n-1} & a_{1n} \\ a_{21} & \dots & a_{2,n-1} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \dots & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & \dots & 0 & a_{1n} \\ 0 & \dots & a_{2,n-1} & a_{2n} \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \dots & a_{n,n-1} & a_{nn} \end{vmatrix} = \begin{vmatrix} 0 & \dots & 0 & a_{1n} \\ 0 & \dots & a_{2,n-1} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \dots & 0 & 0 \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \prod_{i=1}^{n} a_{i, n-i+1}

n阶ab型行列式

abbbabbba=[a+(n1)b](ab)n1\begin{vmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \ddots & \vdots \\ b & b & \cdots & a \end{vmatrix} = [a+(n-1)b]{(a-b)}^{n-1}

拉普拉斯展开式

设A为m阶矩阵,B为n阶矩阵,则

  1. ACOB=AOCB=AOOB=AB\begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = \begin{vmatrix} A & O \\ O & B \end{vmatrix} = |A||B| \\
  2. CABO=OABC=OABO=(1)mnAB\begin{vmatrix} C & A \\ B & O \end{vmatrix} = \begin{vmatrix} O & A \\ B & C \end{vmatrix} = \begin{vmatrix} O & A \\ B & O \end{vmatrix} = (-1)^{mn} |A||B|

范德蒙行列式

Dn=111x1x2xnx12x22xn2x1n1x2n1xnn1=1i<jn(xjxi)D_n = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)

余子式与代数余子式的定义

对于行列式:

A=a11a12a1na21a22a2nan1an2ann|A|= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}

划去 aija_{ij} 所在的第 ii 行和第 jj 列,剩下的 n1n-1 阶行列式为 aija_{ij}余子式,记作 Mij\boldsymbol{M_{ij}}。称 (1)i+jMij(-1)^{i+j} M_{ij}aija_{ij}代数余子式,记作 Aij\boldsymbol{A_{ij}}

评注aija_{ij} 的余子式 MijM_{ij} 和代数余子式 AijA_{ij} 与第 ii 行和第 jj 列元素无关。

按行(或列)展开定理

ai1Aj1+ai2Aj2++ainAjn={A,i=j  0,ija_{i1}A_{j1} + a_{i2}A_{j2} + \cdots + a_{in}A_{jn} = \begin{cases} |A|, & i=j \\ \;0, & i \neq j \end{cases}
a1iA1j+a2iA2j++aniAnj={A,i=j  0,ija_{1i}A_{1j} + a_{2i}A_{2j} + \cdots + a_{ni}A_{nj} = \begin{cases} |A|, & i=j \\ \;0, & i \neq j \end{cases}

行列式的公式

设A,B矩阵为n阶矩阵,则

  1. kA=knA|kA|=k^{n}A|
  2. |AB|=|A||B|
  3. AT=A|A^T|=|A|
  4. A1=A1|A^{-1}|={|A|}^{-1}
  5. A=An1|A^*|={|A|}^{n-1}
  6. 设A的特征值为λ1,λ2,,λn\lambda_1,\lambda_2,\cdots,\lambda_n,则A=i=1nλi|A|=\prod_{i=1}^n\lambda_i
  7. 若A与B相似,则|A|=|B|

Cramer法则

设线性方程组

{a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn\left\{ \begin{array}{c} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \cdots \quad \cdots \quad \cdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{array} \right.

系数矩阵的行列式

D=a11a12a1na21a22a2nan1an2ann0D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \neq 0

则方程组有唯一解x1=D1D,x2=D2D,,xn=DnDx_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \cdots, x_n = \frac{D_n}{D},其中

Dj=a11a1j1b1a1j+1a1na21a2j1b2a2j+1a2nan1anj1bnanj+1ann(j=1,2,,n)D_j = \begin{vmatrix} a_{11} & \cdots & a_{1j-1} & b_1 & a_{1j+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2j-1} & b_2 & a_{2j+1} & \cdots & a_{2n} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nj-1} & b_n & a_{nj+1} & \cdots & a_{nn} \end{vmatrix} \quad (j=1,2,\cdots,n)

推论

齐次线性方程组

{a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0an1x1+an2x2++annxn=0\left\{ \begin{array}{c} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0 \\ \cdots \quad \cdots \quad \cdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = 0 \end{array} \right.
  1. 只有零解    D0    r(A)=n\iff D≠0 \iff r(A) = n
  2. 有非零解    D=0    r(A)<n\iff D=0 \iff r(A) < n

矩阵

概念

  • 若矩阵A与B有相同的行数和相同的列数,则称A,B为同型矩阵。
  • A=(ai,j)A=(a_{i,j})B=(bi,j)B=(b_{i,j})同型矩阵,称矩阵(ai,j+bi,j)(a_{i,j}+b_{i,j})为A与B的和,记作A+B.
  • 矩阵乘法满足结合律和分配律,即(AB)C=A(BC),  A(B+C)=AB+AC,  (B+C)A=BA+CA(AB)C=A(BC), \; A(B+C)=AB+AC, \; (B+C)A=BA+CA
  • 矩阵乘法不满足交换律,即在一般情况下ABBAAB \neq BA.
    从而(AB)2=ABABA2B2,(A+B)(AB)=A2AB+BAB2A2B2,(A+B)2=(A+B)(A+B)=A2+AB+BA+B2A2+2AB+B2{(AB)}^2=ABAB \neq A^2 B^2,\\ (A+B)(A-B)=A^2-AB+BA-B^2\neq A^2-B^2, \\ {(A+B)}^2=(A+B)(A+B)=A^2+AB+BA+B^2 \neq A^2+2AB+B^2
    除非AB=BAAB=BA,如B=0,E,A1,AB=0,E,A^{-1},A^{*}.
  • 矩阵乘法不满足消去律,即在一般情况下[AB=ACA0]B=C[AB=AC\text{且}A \neq 0] \nRightarrow B=C.
  • AB=0A=0B=0AB=0 \nRightarrow A=0 \text{或} B=0.
  • 消去律的充分条件:
    1. 若A为可逆矩阵,则AB=ACAB=AC